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ABSTRACT: A new operational (functional) parameter,
the so-called virtual modulus, E� (t), is introduced. By this, an
attempt was made for the approximation of the function of
the real modulus E(t), which, as known, is valid only for
instantaneous loading, namely, for zero loading times. Thus,
through a simple theoretical modeling and an algorithmic
approach, the determination of E(t), from E� (t), sets sail, at the
end, to the solution of a Volterra integral equation of the
second type, which, in turn, sets sail to the solution of a
differential equation. By the aid of numerical integration and
also of some experimental evidence, it seems that this solu-
tion is valid only for loading times approximately above
0.2 s, thus obtaining, in fact, a “pseudomodulus” of relax-
ation. To assess the validity of this pseudomodulus, the

well-known Kohlrausch–Williams–Watt (KWW) and the
power-law models were used as some crude “criteria.” By
means of best fit, it appeared, at the first instance, that the
so-calculated pseudomodulus better obeys the power-law
model than it does the KWW model. This is a certain con-
tradiction with the so-called apparent modulus, which was
obtained from experiment with a finite loading time supe-
rior to 1 s. Two other criteria that were used have shown a
satisfactory proof of the validity of this modeling. © 2002
Wiley Periodicals, Inc. J Appl Polym Sci 87: 121–137, 2003
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GENERAL INTRODUCTION

The fact that test data from stress relaxation can be
interpreted more easily with the theory of viscoelas-
ticity, than in the case of creep, has increased the field
of application of the relaxation. Except for its signifi-
cance as an experimental method, the stress relaxation
as a phenomenon has also a practical significance of
application in actual life when using the materials.
Thus, for example, flanges of polypropylenium in dif-
ferent construction elements are stressed in a compres-
sional constant strain, where a noncontrollable relax-
ation of stresses in the material would cause gas leak-
ing or alteration of the required vacuum.

Isotactic polypropylene (iPP), due to its “proper”
viscoelastic behavior, is one of the most suitable ma-
terials for medical utensils, like syringes, which, dur-
ing their sterilization with high �-radiation, do not
lose any of their essential properties (mechanical and
physical).

Additionally, for some parts of X-ray instruments,
like prestressed films on stretched windows, a rele-
vant characterization and quality control by the stress-

relaxation technique is required. Apart from its prac-
tical significance, PP is important as a “model mate-
rial” as it shows [together with polyethylene (PE)] a
high stress-relaxation rate,1 which can be controlled
and properly combined with changes in its structure.
This structure can be easily modified in various ways
through a wide change in the spectrum of the crystal-
lization degree and morphology.2

Therefore, with the help of such material, there have
been recently developed certain “subtechniques,”
such as microhardness stress relaxation,3 step-stress
relaxation,4 and variable strain-rate stress relaxation.5

The main purpose of these and other subtechniques is
the introduction of some new operational parameters
for a more practical characterization of solid polymers.
Some of those parameters are population rates,6 decay
time ratio,7 internal stresses,8 and strain-rate sensitiv-
ity index.4 It is worthy to mention Tobolsky’s9 remark-
able effort on the development of a general method of
“chemiorheology,” where, through the use of the pa-
rameter of “intermittent stress relaxation,” he man-
aged to observe the dynamic evolution of the
“crosslinks” in connection to the time of the vulcani-
zation process of various elastomers.

In this extended study composed of a series of three
articles, we will develop and apply some new relevant
operational modes with the involvement of the corre-
sponding “operational parameters.” We believe that
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this new “operational way” of investigation will not
only contribute to a more integrated characterization
of PP’s viscoelasticity, but also to a deeper research
and understanding of the viscoelastic behavior of
solid polymers in general.

EXPERIMENTAL

Particular knowledge of certain constructive parame-
ters on every polymer material, other than general
properties and definition, is required before the mate-
rial enters the experimental stages. Some of these pa-
rameters, such as the melt-flow index, the molecular
mass and weight distribution, and the heterogeneity
index (Mn, Mw, D) are given in Table I. Further char-
acteristics of the PP used can be found in ref. 10.
Isotropic materials were obtained at 150°C from com-
pression-molded sheets with a thickness of 0.30 cm.
The sheets were afterward cooled at room tempera-
ture. From these sheets, dog-bone specimens were cut,
which were tested in stress relaxation. The degree of
crystallization was afterward estimated by using the
DSC thermographs as follows: The specific melt en-
ergy, �H � 71 J g�1, was measured using a DuPont
thermal analyzer and then, based on the known value
of �Hc � 165 J g�1 (ref. 11), which corresponds to the
“ideal” crystal, the “apparent” crystallinity was calcu-
lated approximately to 43 wt %. All tests were carried
out at room temperature (� 24°C) and using an In-
stron-type machine.

THEORETICAL ASSUMPTIONS

Specific remarks to the relaxation modulus

Compared to the uniaxial tension, the stress-relaxation
experiment appears to be more sensitive to the vis-
coelastic response of the material. This happens be-
cause, although the stress is being reduced, the elastic
component of deformation gradually lessens and the
viscoelastic one increases. In other words, the high
elastic modulus of the material serves as a kind of
“amplifier” for the “tracing” of the viscoelasticity. Ad-
ditionally, the fact that the initial total strain can be
very low—so that there is no way for plastic deforma-
tions to interfere and hide the viscoelasticity or alter
the effects—corroborates the use of E(t) as a parameter
for the measurement of the viscoelastic response
through a relaxation test.

Undoubtedly, the relaxation process is related to the
basic factor of finite loading time (strain rate), which
directly influences the E(t) and is indirectly being in-
fluenced by the machine’s quality. Therefore, Hed-
worth and Stowell12 pointed out some problems de-
riving from the finite loading time required to stop the
crossheads and the time delay existing between the
actual load and its measurement. They also noted
some errors caused by the halt of the crossheads dur-
ing high-speed loading, where there is an instanta-
neous reverse movement and which, as a result, has
the imposition of an initial compressive deformation
on the specimen.

Although E(t) is theoretically defined as the modu-
lus arising from an instantaneous loading—that is,
from a “zero” loading time—it is obvious that, due to
the finite loading time, there will be a difference be-
tween this theoretical or real modulus and the actual
or apparent one deriving from the experiment. De-
pending on the material that we use, this difference
can be either big or small, and specifically for PP, the
material which we used for the experiment in ques-
tion, will be big due to its high relaxation rate. Con-
sequently, one way to reduce this difference is to
minimize the loading time for the given strain.

However, this procedure can fail not only due to the
problems mentioned above but also to some more
which Kobayashi and Ohtani noted and tried to
solve.13 Therefore, they proved that, for high-speed
loading, there is a transient crosshead speed range
until the achievement of the final speed. The use of
slack grips (a special kind of crossheads) was a satis-
factory solution for a specific high-speed (or strain-
rate) limit. But, generally speaking, we can state that
the standard loading time of a range of 1 s can hardly
been achieved and definitely not without serious in-
accuracies. Consequently, an effort should be made to
find an approximate way to calculate the relaxation
modulus with loading times below 1 s, something
which would prove to be quite constructive and useful
for the detailed characterization of the viscoelastic
behavior of a strain-rate-sensitive polymer material,
such as PP in our case.

General definitions

We consider the real relaxation modulus E(t) as the
one which is derived from the “ideal” experiment for
an instantaneous loading time step “i” f 0 with the
corresponding loading time ti and we symbolize it, in
general, as i f 0, ti�0 � 0. But, given that this is not
practically feasible, we define as an “apparent” mod-
ulus a different relaxation modulus Ẽi(t), which de-
rives from the experimentation with finite loading
time ti�0 � ti � 0, where index i indicates the step of
loading with the corresponding loading time ti, for a
constant strain �0. Therefore, from the above defini-

TABLE I
Physico-chemical Properties of the PP Used

MFI (230°C/2.16 kg) 15.4
MFI (190°C/2.16 kg) 6.1
Mw 257,500
Mn 59,000
D 4.3
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tions, it is concluded that Ẽ0(t) � E(t) for observation
times t � ti � 0.

Now, the achieved stress at the end of the loading
time ti and up to a certain strain �0 is defined by the
known equation14

��ti� � �̇0 �
��

	�

�H�1 � e�ti/��d ln �

� �̇0 �
0

ti �
��

	�

H�e�u/��d ln � du (1)

Additionally, by taking into consideration the equa-
tion

E�t� � �
0

�

H�ln ��e�t/� d ln � (1a)

where H(ln �) is the distribution spectrum (spectral
density) and by combining the above two equations (u
3 t), the result will be

��ti�

�0
�

1
ti
�

0

�

E�t� dt � E� i�ti� � “virtual” modulus

(2)

This is a “new” relaxation modulus which can be
expressed as a “time-averaging” of the modulus E(t)
and which is symbolized with a bar � average. This
“new” modulus is defined as the “virtual relaxation
modulus” and has, at the same time, an operational
purpose in the whole procedure for the characteriza-

tion of the material. In other words, the basic eq. (2)
provides the stresses and the “new” moduli at the end
of the loading time ti � 0. Therefore, this relation
represents an overlapping of a series of continuously
relaxing stresses during the time interval from zero to
ti. Consequently, we have a kind of “kinematical”
relaxation and not a “static” one, as it occurs in the
apparent modulus (stress), where the static relaxation
process evolves within the time of observation t � ti,
under fixed crossheads, that is, constant deformations.
From the above, it is concluded that we can formally
write E� i � E� i(ti) � E� (t), thus meaning that, for the
virtual modulus obtained from the loading steps “i,”
the loading time ti is identical with the observation
time t.

In our case, where PP is being examined, we can
prove, in an original way, the validity of the following
basic inequality which will be used for the theoretical
modeling (see Fig. 1):

E� �t� � E�t� (3)

As the procedure of proving the above is quite labo-
rious and lengthy, the reader can refer to Appendix A.
There is also the following inequality:

E� i � Ẽi�t� � Ẽ0�t� � E�t� (4)

which is valid and will be used in conjuction with (3).
For the same reason, the proof of this inequality is
given in Appendix B. Furthermore, for loading times t
3 0, it must be (see Fig. 1)

E� 0�0� � Ẽ0�0� � E�0� (4a)

Figure 1 Schematic curves for the three types of moduli.

NEW MODES AND PARAMETERS OF STRESS RELAXATION. I 123



From the sketch of Figure 1, it can be seen that the
virtual moduli represent the geometrical place (an
envelope) of the experimental (actual) loading stresses
by forming, in this sense, an “upper-limit” zone for the
relaxing moduli. At the same time, the apparent mod-
ulus Ẽ(t), which is obtained after finite loading time ti

and for observation times t � ti � 0, must be higher
than the theoretical (real) modulus E(t) for the same
observation time “t.”

In general, for those three relaxation moduli, we can
state the following: The virtual modulus E� i is obtained
through a kinematic relaxation during the loading
time ti, while the apparent modulus Ẽi(t) and the real
modulus E(t), through a static relaxation with time t
� ti after finite loading time ti � 0 and zero loading
time ti � 0, respectively.

The schematic graph in Figure 1, which explains in
detail all the above, was drawn based on the afore-
mentioned comments and the details described in Ap-
pendices A and B. Considering all the above and by
experimentally measuring several E� i points, we con-
structed, step by step, the virtual modulus E� (ti) curve.
The schematic E� i curve shown in Figure 1 was exper-
imentally constructed from Figure 2 as follows: Sev-
eral graphs of the stress/strain for different strain
rates �̇i were drawn initially. The vertical abscissas
were then taken, and through the horizontal ones, the
corresponding stresses �i were drawn, for a certain
prescribed reference strain �0 with a vertical line at �0.
Finally, the loading time ti � �0/�̇i was calculated and
the diagram �i/�0 versus ti, which presents the virtual
relaxation modulus curve, was drawn.

A physical explanation of the virtual modulus can
be given now, based on the aforementioned assump-
tions. Therefore, this modulus does not present the
physical relaxation phenomenon as such and, in this
sense, is not a continuously time-decay formation
function in form of E(t) or Ẽi(t) with observation time
t. On the contrary, it is a discontinuous function of
loading time ti and indicates a fictive phenomenon
(fictive downward formation function versus increas-
ing loading time).

Algorithmic approach of the real modulus by
means of the virtual modulus

In the previous paragraph, it was mentioned that a
material with a high strain rate sensitivity shows great
differences of the apparent relaxation modulus. From
the studies in ref. 5, it is known that PP has one of the
highest degrees of this sensitivity and, therefore, no-
ticeable differences of the apparent relaxation modu-
lus for different loading times ti are expected. To better
study this problem, we tried to develop a method to
approximate the real modulus E(t) by the virtual mod-
ulus E� (t). For this reason, some helpful data are taken
from the schematic of Figure 3, where Ã1,2 is the total
“curvilinear” area between curves 1 and 2 and A‚1

A�1,2

are the triangular and orthogonal areas, correspond-
ingly. The upper curve (1) represents the virtual relax-
ation modulus, while the lower line (2), the real one.
By assuming an instantaneous loading and taking into
consideration the basic inequality (3), we have

Ã1 � A‚1 	 A�1

Ã2 � A‚2 	 A�2 (5)

Ã1 � Ã2 � �A‚1 � A‚2� 	 �A�1 � A�2� � 0


from inequality �3�� (6)

A�1 � A�2 � t
E� i�t� � E�t�� (6a)

Figure 2 Loading pattern for the virtual modulus construc-
tion.

Figure 3 Schematic graph of the geometric area relations
among the virtual, apparent, and real moduli.
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E� �0� � E� �t��t
2 � 
1A‚1,


E�0� � E�t��t
2 � 
2A‚2 (7)

Also, 
1(t 3 0) � 1 and 
2(t 3 0) � 1, with 
1(t) � 1
and 
2(t) � 1. From the experiments with different
loading times ti, it was possible for the apparent mod-
ulus to obtain


Ẽi�0� � Ẽi�t��t
2A‚i

� 
i � const

for all loading time steps i f ti and for the same
observation times t � ti and t � 3 min. Therefore, it is
valid to assume the general relation 
1 � 
2 � 
(t).
This means that we do not have any influence because
of the loading time, a fact that for Eqs. (7) means, in
turn, an independence of the strain rate. Now, taking
into consideration the basic relationships between the
areas in Figure 3 and the basic relations (6), (6a) and
(7), we can write

Ã1 � Ã2 � �
0

t

E� 0�t�� dt� � �
0

t

E�t�� dt� �
t

2


� 
�E� �0� � E�0�� 	 E�t� � E� �t�� 	 t
E� �t� � E�t�� (8)

After some algebra, we take the integral equation

I��t� � �
0

t


�t�� dt� �
t
2 
�1�t�
�t� �

t
2 
�1�t���t�

	 t � ��t� � t
�t� (9)

where

I��t� � �
0

t

E� �t�� dt�, 
�t�� � Ẽ0�t�� � E�t��,

��t� � E� �t�

and using the general assumption,

E�0� � E� 0�0� � Ẽ0�0�

(at the instantaneous loading step, i f t0 � 0, all the
initial moduli are equal).

The above relation is written


�t�t�1 �
1

2
�t�� � �
0

t


�t�� dt�

� ��t�t�1 �
1

2
�t�� � I�t� � f�t� (10)

This relation is a second-type Volterra integral equa-
tion and can be solved by differentiating the time
variable t and obtaining the following differential
equation:


̇�t�
� �t� 	 
�t� �
�t� � 
�t� � ḟ�t� (11)

or


̇�t� 	 
�t�� �
�t� � 1


� �t� � �
ḟ�t�


� �t�
(12)

and, generally,


̇�t� 	 
�t� � P�t� � Q�t� (13)

with


� �t� � 1 �
1

2
�t�

and

P�t� �
�
�t� � 1


� �t�
, Q�t� �

ḟ�t�


� �t�

The above differential equation has the following
closed-form general solution:

E�t� � Ẽ0�t� � 
�t�

� exp���
0

t

P�t�� dt��
2

��
0

t

Q�t��exp��
0

t�

P�x� dx� 	 c�
(14)

where, for t0 � 0, we have c � 
(0) � E� 0(0) � E(0)
� Ẽ0(0).

Here, the basic fact is that, by the definition 
(t)
� Ẽ0(t) � E(t), we can, theoretically at least, calculate
a relaxation modulus for very short loading times, in
case we know some other parameters such as c, �(t),

(t) and f(t). Since the whole procedure of the analyt-
ical solution and the verification of the errors in the
numerical integration, and also the assumptions and
approximations required, are quite lengthy and time-
consuming, we refer the reader to the special Appen-
dix C. We advance here by having the results as given
and will discuss them in the following section.

RESULTS AND DISCUSSION

The virtual moduli E� i points are shown in Figure 4,
computed through the use of “virtual” stresses �� i, for
various initial strains �0. For the points E� i for a given
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reference �0 � 1%, a “continuous” time-decay curve,
shown in Figure 5, and based on the “Best-Fit” of
“Jandel Table Curve 2D” software was constructed.

For details, this program has been designed to fit large
(8000) numbers of candidate curve-fit equations in a
fully automated fashion. Among them, a “decay”

Figure 4 Experimental points of the virtual moduli curves for different reference strains �0.

Figure 5 Construction by best-fitting procedure of a virtual modulus curve for initial reference strain �0 � 1%.
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form function of the form E� (t) � E� (0)e�a � t 	 E� (�) was
chosen, as it was better at reflecting the relaxation
phenomenon. This function, combined with a extrap-
olation to t � 0, indicatively results to E� (0) � 1200 MPa
as a general, initial relaxation modulus [E� (0) � Ẽ(0)
� E(0)]. Therefore, we have the constant c � E� (0) in
eq. (14).

The final result is shown in Figure 6, where the most
suitable curve function on the Ei(ti) points, calculated
using the approximations given in the special Appen-
dix C, was best-fitted. In fact, now it can be argued
that this curve represents the so-called pseudorelax-
ation modulus, E(t), because, as analyzed in detail in
Appendix C, the algorithm developed in this way is
valid only for initial loading times ti greater than
about � 0.20 s and not for the “instantaneous” loading
time ti � 10�10, which are the minimal mechanical
relaxation times for a material estimated from other
relaxation phenomena such as magnetic and dielec-
tric.15

It must be stated that the previously described
method, apart from the others, depends on the “ex-
trapolation-to-zero” technique. This technique is
widely applied for many cases and, despite the degree
of uncertainty it includes, is the only approachable
way. It must be pointed out that this “zero”-time
approach is more direct and is achieved with better
precision through the use of the virtual modulus than
it would be through the use of the apparent modulus.
In this sense, the approach through the use of the
apparent modulus would require an extrapolation to
zero for every given loading time and then a new
extrapolation to zero through a curve of extrapolation
points versus loading times.

There are some “crude criteria” to control the afore-
mentioned results. In this sense, one is to check the

“memory” of the final curve, that is, whether the
calculated final result shown in Figure 6 “retains”
some of the general characteristics or trends of the
“initial” curves, that is, the Ẽ(t), which are the ones
which represent the apparent relaxation phenomenon.
The first very simple criterion is to compare, for ex-
ample, Figures 6 and 7 and to confirm, from similar
shapes, the trend of decrease of the kinematical relax-
ation rate (intensity) when the loading time is re-
duced.

As is known and will be analyzed in more detail in
Part II of this investigation, the relaxation phenomena
are “governed” by certain general and empirical mod-
els, like the one of Kohlrausch–Williams–Watts
(KWW) and the one of the “power law.”15 The first
model is expressed through the modified best-fit lin-
ear relation: ln g(t) � a 	 btn (0 
 n � 1), and the
second, also through the linear modified one: ln g(t)
� � 	 � ln t. Concerning the first relationship with the
majority of polymers in the equilibrium state above Tg,
the parameter n is often found to be approximately 1

2
for stage 1 of the relaxation process in the time range
from zero to 1 h, whereas, concerning the second
relationship, the parameter � is about �1

2.
15 Regarding

PP, our calculation was made based on the relation
g(t) � Ẽi(t) � Ẽi(�), with Ẽi(�) � 0 and Ẽi(0)/Ẽi(�) � 1

2
proved for many loading times ti (for temperature of
25°C).

Thus, now according to that mentioned above, a
second crude criterion will serve as a measure of
comparison of the correlation factors r2 from the best-
fit procedure in these two models of the apparent
modulus Ẽ(t) and the pseudomodulus E(t). This ap-
pears in Figures 8 and 9 and in Figures 10 and 11,
where the best fit of these two moduli in the power-
law and KWW models, respectively, is given. Here,

Figure 6 Calculated pseudomodulus curve by the numerical algorithms.
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the very good response of the apparent modulus to both
models can be observed, but, at the same time, also the
nonsatisfactory response of the calculated pseudomodu-
lus mainly to the KWW model. The reason for this could
be the fact that the virtual modulus itself has a relatively
low correlation factor in both models, as it appears in
Figures 12 and 13. However, we can also observe that,
from the two models, the power-law model generally
better approximates the three moduli.

As a third criterion, we can take advantage of the
behavior of the three moduli as to the relaxation spec-

trum H(�), which can be determined with some ap-
proximation through the “zeroth” approach of Al-
frey14:

H��� �
dE�t�
d ln t�

t��

(15)

The results of best fit for this case are given in Figures
14–16. From these figures, the very good approxima-
tion of the apparent modulus in Tobolsky’s box-dis-

Figure 7 Strain rates versus loading times (for a given constant load).

Figure 8 Linear regression (best-fit) curve of the apparent modulus for the power-law evidence (for strain rate � 10�2/s).
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tribution spectrum is observed and also the declina-
tion of the two other moduli E(t) and E� (t) from this
given box distribution. Especially for the E(t) modu-
lus, we can assume that the relaxation spectrum sep-
arates into two linear ranges, that is, into two box-
distributions, as can be distinguished in Figure 15.

From the above, the relative “memory loss” of the
calculated pseudomodulus E(t) in relation with the
apparent Ẽ(t) becomes evident, whose behavior, as to

the points that we examined above, we consider as
“right,” and, consequently, it constitutes a reference
basis for the validity check of the proposed modeling
by the virtual modulus.

This memory loss must be further investigated in
the behavior of the virtual modulus in Figures 12 and
16, from where nonlinear behavior is observed, that is,
the beginning of a declination from the respective
linearized models for reference strain �0 between 1

Figure 9 Linear regression (best-fit) curve of the apparent modulus for the KWW model evidence (for strain rate � 10�2/s
and initial strain �0 � 12 � 10�2).

Figure 10 Linear regression (best-fit) curve of the calculated pseudomodulus for the power-law model evidence (from
Fig. 6).
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and 2%. Thus, it becomes clear that, through the vir-
tual modulus, over about 2% strain, nonlinear vis-
coelastic effects are entering which decrease the ap-
proximation of the calculated pseudomodulus in rela-
tion to the real modulus.

As a fourth criterion, we can evaluate the fact that
all the moduli for large experimental observation
times and for a given initial strain should converge to

one value. This fact is explained in more detail in
Appendix B, from where it results that the general
relationship E� (t 3 �) � E(t 3 �) � Ẽ(t 3 �) must be
valid. Since the relaxation rate for iPP is very sensitive
to the temperature, the experimental evidence of the
above criterion should be examined. Taking into con-
sideration all these, the related experiments showed
that, for the initial strain of �1% and for times t � 150

Figure 11 Linear regression (best-fit) curve of the calculated pseudomodulus for the KWW model evidence (from Fig. 6).

Figure 12 Linear regression (best-fit) curve of the virtual modulus for the power-law evidence for several reference strains.
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s, the three moduli tend to converge to the approxi-
mate value of 550 � 50 MPa (see Figs. 5 and 6).

CONCLUSIONS

In this article, an effort was made to introduce, in a
“modus operandi” way, a certain operational mode
and parameter to characterize more effectively,

through a profound study, the linear and nonlinear
viscoelastic behavior of polymers using the example of
iPP.

Depending on the method used and its correspond-
ing parameter, this effort has shown the following:

(a) Using the virtual relaxation modulus and an
adequate algorithmic approach, we obtained a

Figure 13 Linear regression (best-fit) curve of the virtual modulus for the KWW model evidence and for reference strain �0
� 1%.

Figure 14 Spectral box-distribution evidence for the apparent modulus (for strain rate � 10�2/s).
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pseudomodulus, which, under certain condi-
tions, gives satisfactory results for the approxi-
mation of the real relaxation modulus for load-
ing times down to 1

5 s—something which is not
feasible through experiments, due to the known
phenomena of a machine’s inertial effects, etc.
At first instance, this pseudomodulus can be
used as a “simulation” modulus of the “real”
relaxation modulus, based on experimental
data. Consequently, for the first instance, the
practical meaning of this operational mode (pa-
rameter) is more academic rather than for broad
use.

(b) Having this simulation as an operational tool,
several polymeric materials can be compared
with each other more effectively, since, at least
as the first results show, this pseudomodulus
seems to have larger experimental evidence sen-
sitivity than has the apparent modulus.

(c) Taking into consideration the simplicity of the
theoretical modeling, we can characterize the
results as quite satisfactory and also encourag-
ing for further studies and comparisons with
other polymeric materials.

APPENDIX A: ABOUT THE INEQUALITY
RELATION E� (t) > E(t)

A semiempirical distribution of the relaxation time
spectrum H(�) is given in the schematic in Figure A.1,,
in a double-logarithmic scale, which is valid with a
crude approximation for many polymers such as crys-
talline nylon-6 and methacrylate.14 Therefore, there
are four general distribution zones: from � � �0 � 0 to
� � ��4 � 0. The minimum relaxation time of the

Figure 15 Spectral box-distribution evidence for the calculated pseudomodulus.

Figure 16 Spectral box-distribution evidence for the virtual
modulus (for different strains).
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molecules of a material according to solid polymer
physics is not at “absolute zero,” but is of the order of
10�10 s, which represents the easiest rotation of a
group of CH3 molecules. So, we have �min � �0
� 10�10 s (ref. 15).

Taking into consideration Figure 17, the general
forms of the four distribution zones are as follows:

1. 10�10 � � � 10�8, ln H1(�) � K1 � const (box-
distribution)

2. 10�8 � � � 10�2, ln H2(�) � K2 ln � 	 K�2, where
K2 � �1 (Kirkwood model)

3. 10�2 � � � 100 � 1, ln H3(�) � K3 ln � 	 K�3, where
K3 � �1

2 (Rouse model)
4. � � 1, ln H4(�) � K4, where K4 � const (Tobol-

sky’s box-distribution).

From the relation of the kinematic relaxation,

��t� � �̇ � �
0

t �
��

	�

H���e�t�/� d ln � dt� (A.1)

the following equation is obtained:

��t�
�

�
1
t �

0

t �
0

�

E���e�t�/� d� dt� �
1
t �

0

�

� �E���
1 � e�t/�� d� �
1
t �

0

t

E�t�� dt� � E� �t�

� “virtual relaxation modulus”

Therefore, it has to be shown for which observation
times “t” the following inequality is valid:

1
t �

0

�

H���
1 � e�t/�� d� � �
0

�

E���e�t/� d� (A.2)

where

�
0

� � 	 � �
�0

�1

	 �
�1

�2

	 �
�2

�3

	 �
�3

�4

	 · · ·

1. For the first zone, we have

H1��� � ek1 � const � K� 1

E��� � K� 1/�

by substituting in eq. (A.2):

�
�0

�1

K� 1 d� � t �
�0

�1 K� 1

�
e�t/� d� 	 �

�0

�1

K� 1e�t/� d�

(A.3)

Taking that 1/� � z,

�
�0

�1

e�t/� d� � �e�t�z

z �
1/�0

1/�1

	 t �
1/�0

1/�1 e�t�z

z dz

(A.3a)

and

�
�0

�1 1
�

e�t/� d� � ��
1/�0

1/�1 1
z e�t�z dz (A.3b)

In this way, the following inequality is ob-
tained:


���0

�1 � �e�t�z

z �
1/�0

1/�1

� 
e�t/����0

�1 (A.4)

and, finally,


�1 � �0� � �1e�t/�1 � �0e�t/�0 (A.5)

Using some algebra, it can be shown that, for
the given time �0 � 10�10 s and �1 � 10�8 s, the
above relation is valid for all observation times
t � 0 s.

Figure A.1 Schematic spectral distribution zones of the relaxation times for PP.
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2. For the second distribution zone (Kirkwood
model), we have

H��� � ��1K� 2 and E��� � ��2K� 2,

with K�2 � ln K� 2

and by substituting in eq. (2), we have

�
�1

�2 1
�

d� � t �
�1

�2 1
�2 e�t/� d� 	 �

�1

�2 1
�

e�t/� d�

(A.6)

Using the transformations 1/� � z, d� � �(1/z2)
dz, and dz � (�d�)/�2,

�
�1

�2 1
�

e�t/� d� � ��
1/�1

1/�2 1
z e�t�z dz

� �
lnz�1/�1

1/�2 	 �

n�1

� ��tz�n

n � n! �
1/�1

1/�2���1� (A.6a)

�
�1

�2 1
�2 e�t/� d� � ��

1/�1

1/�2

e�t�z dz �
1
t 
e�t�z�1/�1

1/�2

�
1
t 
e�t/�2 � e�t/�1� (A.6b)

�
�1

�2 1
�

d� � ln �]�1

�2 � ln��2/�1�, ��2 � �1�

After some simplifications, it remains to be
shown that

e�t/�1 � e�t/�2 � 

n�1

�


��t/�1�
n � ��t/�2�

n�
1

nn!

(A.7)

where, by using Taylor’s expansion, we obtain



n�1

�


��t/�1�
n � ��t/�2�

n�
1
n

� 

n�1

�


��t/�1�
n � ��t/�2�

n�
1

nn! (A.8)

By defining t/�1 � x, t/�2 � y, (1/n!)( xn � yn)
� �n, and �n � �n(1/n) � �� n, where x � y,
because of �2 � �1, the relation (A.8) is modi-
fied as the following:



n�1

�

��1�n�� n � 0 (A.9)

This inequality is valid if it can be shown that
�� 2n � �� 2n�1, which means that the following
inequality must also be valid:

�2n�1 �
1

�2n�!	 � �2n�1�1 �
1

�2n � 1�!	 (A.10)

This means that we must have

�2n

�2n�1
�

�2n � 1�!x�1 � �y
x	

2n�
2n!1 � �y

x	
2n�1 �

1 �
1

�2n � 1�!

1 �
1

2n!

(A.11)

Taking now the limit n 3 �, we obtain from
(A.11) the solution x � 1, which by t/�1 � x
becomes t � 10�8 s.

3. For the Rouse-type distribution, we have

H��� � ��1/ 2K� 3 and E��� � ��3/ 2K� 3,

with K�3 � ln K� 3 (A.12)

Substituting in relation (A.2),

�
�2

�3 1

��
d� � t �

�2

�3 1
�3/ 2 e�t/� d� 	 �

�2

�3 1

��
e�t/r d�

(A.13)

Using the following transformations of the
variables,

z �
1
�

, dz � �
d�

�2 , d� � �
dz
z2 (A.13a)

�
�2

�3 1

��
e�t/� d� � ��

1/�2

1/�3 1
z3/ 2 e�t�z dz

�
1

1 � 3/ 2 ���
e�tz

z1/ 2�
1/�2

1/�3

� t �
1/�2

1/�3 e�t�z

�z
dz�

(A.13b)

�
1/�2

1/�3 e�t�z

�z
dz � 2 �

�1/�2

�1/�3

e�tq2 dq, for �z � q and

(A.13c)

�
�2

�3 1
�3/ 2 e�t/� d� � ��2� �

�1/�2

�1/�3

e�tq2 dq,

with
1

��
� q (A.13d)

Then, relation (A.13) is modified:
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2 � �2
����2

�3 � ��2�t �
�1/�2

�1/�3

e�tq2 dq

	 
2e�t/�����2

�3 	 4t �
�1/�2

�1/�3

e�tq2 dq (A.14)

and after some simplifications,

��3 � ��2 	 t �
�1/�3

�1/�2

e�tq2 dq � 
��e�t/���2

�3

� ��3 e�t/�3 � ��2 e�t/�2 (A.15)

where for t � 0, the following identity is ob-
tained:

��3 � ��2 � ��3 � ��2 (A.15a)

Since the integral in inequality (A.15) yields a
positive contribution, because it has a positive
value, this inequality would be even more
valid if the inequality is valid:

��3 � ��2 � ��3 e�t/�3 � ��2 e�t/�2 (A.15b)

This inequality is similar to eq. (A.5) and, conse-
quently, through similar algebraic calculation,
we can prove easily that relationship (A.15b) is
valid for all observation times t � 0 s.

4. For the last zone, the procedure is the same as
that for the first zone, where it was proved that
the inequality (A.2) is valid for all loading times
t � 0 s.

It must be noted that the constant K4 of the distri-
bution of this last zone of the spectrum can be esti-
mated by the “zeroth” Alfrey approximation eq. (15)
in the text, through the experimental data of Figure 8.
Also, it has to be noted that, from the above calcula-
tions, it can be deduced that the general basic inequal-
ity E� (t) � E(t) is not valid for all observation experi-
mental times t � 0 but for specific time intervals
depending on the distribution zone. In this sense,
there is a common lower limit of an observation time
for all zones, of the order of 10�8 s, which is, by far, the
range of experimental time data for which the algo-
rithmic modeling approach, concerning the existence
of the virtual modulus, is valid (see Appendix C).

APPENDIX B: ABOUT THE INEQUALITY
RELATION Ẽ(t) > E(t)

This topic is related to the influence of the loading
time ti, or the constant deformation rate �̇0, on the
mode of relaxation of a polymer under constant strain
�0. So, for a given loading time ti, the apparent stress

�̃(t), which is observed after time t � ti, is given by the
following relation12:

�̃�t� �
�0

ti
�

t�ti

t �
��

	�


H���e�t�/��d ln � dt�

which is modified to

�̇0 �
t�ti

t

E�t�� dt� � �̇0 �
��

	� ��
t�ti

t

H���e�t�/�� dt� d ln �

� �̇0 �
��

	�


��H���e�t�/��t�ti

t d ln �

� �̇0 �
��

	�

�H���
�e�t/� 	 e��t�ti/��� d ln �

� �̇0 �
��

	�

H����e�t/�

� 
�e�ti/t��t/� � 1� d ln � (B.2)

By assuming that ti/t � 1, we have e�ti/t � 1 � ti/t
and (1 � ti/t)�t/� � 1 	 ti/� and the following simpler
relation is obtained:

�̃�t� �
�0

ti
�

��

	�

H����
e�t/��1 	 ti/�� � e�t/�� d ln �

� �0 �
��

	�

H���e�t/� d ln � � �0E�t� � ��t� (B.3)

This means that, for ti � t, the “apparent” stress is
becoming equal with the “ideal” stress. The same is
valid for the corresponding relaxation moduli, that is,
Ẽ(t) � E(t). Struik16 proved that, for ti/t � 1

10, the
“apparent” modulus can be considered equal to the
“ideal” (real) one. The above are valid considering the
linear theory of viscoelasticity. For a nonlinear behav-
ior, for these moduli to become equal, longer observa-
tion times are needed (t � 10ti).

Now, for a quasistatic loading where ti 3 t, and
taking a step-function approach as e�t/� � 0 for � � t
and e�t/� � 1 for � � t, we obtain from relation (B.2)

�̃�t� 3 0 (B.4)

In the text, it was shown that the virtual modulus is
the result of a kinematic relaxation and, thus, for a
quasi-static loading, that is, for t 3 ti and using rela-
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tion (B.4), it can be assumed that E� (ti) � Ẽ(t) � E(t)
3 0. This means that all the relaxation moduli are
tending to become identical for (very) long experimen-
tal observation times. The above-mentioned phenom-
ena are better shown in the schematic of Figure 1.

APPENDIX C: ALGORITHMIC APPROACH OF
THE “REAL” MODULUS E(t) BY THE

“VIRTUAL” RELAXATION MODULUS E� (t)

The following differential equation is to be solved:


̇�t� 	 
�t�P�t� � Q�t� (C.1)

where


�t� � E�t�, P�t� �
�
�t� � 1


� �t�
, Q�t� �

ḟ�t�


� �t�

and f(t) � �(t)
� (t) � I�(t), where �(t) � E� (t), I�(t) � �0
t

E� (t�)dt�, and 
� (t) � t[1 � 1
2 
(t)].

The “closed”-form solution of the differential eq.
(C.1) is

E�t� � 
�t� � e��0
t P�t��dt���

0

t

Q�t�� e�0
t� P�x�dx dt� 	 c�

(C.2)

where c � 
(t � 0) � E(t � 0).
First, the following integral is determined:

�
0

t

P�t�� dt� � �
0

t �
�t��


� �t��
dt� � �

0

t dt�


� �t��
(C.3)

To simplify the parabola 
(t), it was possible to take an
approximation with the line 
(t) � 1 	 0, 2t, which is
good for the time interval 0 � t � 3 min. Thus, the
function


� �t� � t�1 �
1

2
�t�	
is obtained and the integral (C.3) is modified:

�
0

t

P�t�� dt� � 
ln 
� �t��0
t � �

0

t 
�t�� dt�

t��
�t�� �
1
2�

(C.4)

From integral tables, we have

�
0

t

�t�� dt�

t��
�t�� �
1
2�

� ln
t2

0.2t 	
1
2

(C.4a)

Hence, the following function is obtained:

F2�t� � e��0
t P�t��dt� �

1

� �t�

t2

0,2t 	
1
2

�
0.2t2 	 t

0,22t2 	 0,2t 	
1
4

(C.5)

We also find

F1�t�� � e�0
t� P�x�dx � 
� �t��

0.2t� 	
1
2

t�2 (C.5a)

and

Ik�t� � �
�k

t

Q�t��F1�t�� � �
�k

t

f�t��
at� 	

1
2

t�2 dt� � I�t, �K�

(C.5b)

It is obvious that lim��30 Ik(t) 3 � and, therefore, for
this case, the problem is vague and complicated. Nev-
ertheless, from the polymer physics,15 it is known that
the minimal relaxation time is approximately 10�10 s
(not “absolute null”) and, therefore, we have �k

� 10�10 s.
Consequently, a basic theoretical condition in order

that the problem have a solution is

Ik�t 3 �� � �k � const (C.6)

This was clearly shown in the PC charts, where the
integral Ik(t) was stabilized into a certain value for as
long as t is increasing and for a certain given value �k.

Another basic experimental condition which must
also be kept is

E�t 3 �� � lim
t3�

F2�t�
Ik�t� 	 c� � E� � const (C.7)

where the constant for iPP is E� � E(0)/2 for a tem-
perature of 25°C and which is almost independent of
the strain rate. The constant c is is determined from the
relation E� (0) � E(0) � c, based on the values arising
from the extrapolation of the corresponding best-fit
function in Figure 6 for t � 0, from which we obtain C
� 1200 MPa. Furthermore, we can also approach the
equation F2(t) � 5 for t3 � or at least for conveniently
long times. Therefore, using the values elicited from
above, the condition (C.7) becomes

lim
t3�

5��k 	 1200� � 600 (C.7a)

stating that, for long times, we must have �k � �1080.
This means that, through the conditions (C.6) and
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(C.5b), we must find a “suitable” initial loading time
or kinematical relaxation time “�k” to satisfy them. In
this way, it was found that this is valid for �k � 20
� 10�2 to 25 � 10�2 s. Consequently, the model de-
veloped in this Appendix does not “operate” for initial
relaxation times (loading times), which are less than
about one-fifth of a second.

To have a more general picture regarding the prac-
tical efficiency of this model algorithm, we can make
the following estimations: For a specimen with a
“moderate” length, with l0 � 100 mm, and for a ma-
chine with “fast-efficient” loading and crosshead
speeds of 1 mm/s, for which there are no deficiencies
due to the machine’s inertial effects or to transitional
speeds,13 and for a “practical” linear viscoelastic de-
formation � 1%, we take a relevant “reference” load-
ing time of t � 1 s. Considering this time as a reference
measure for the performance of such a reference
method, it appears that our method is “not so effi-
cient,” as we achieved “only” a 1

5 to 1
4 reduction of the

“reference” loading time. But, we should mention
that, for the calculation of the “pseudo-real” curve
E(t), we used the data of the initial E� (0) and E(0)
moduli, calculated through the extrapolation of the
“best-fit” curve, which has a relatively high degree of
approximation (r2 � 0.98). Therefore, we think that the
so-determined pseudomodulus must be much closer
to the real one than are the ones determined from an
experiment with a loading time of approximately 1 s
or greater.

Regarding the choice of the �(t) � E� (t) and I(t)
functions, we should mention the following: With the
help of best fit, we found that, in general, E� i(t) � �e�at

	 �, with a correlation factor r2 � 0.98. Also, from
very simple planimetric measurements, it was shown
that

�Area value�

� �
0

t

���at� 	 �� dt�

� 1 � 5%

thus arriving at I(t) � �0
t E� (t) dt with a good approxi-

mation.
As the f(t) equation has been approached through

experimental data with the help of best-fit, various
“uncontrollable” great errors would intrude by the
equation’s differentiation [i.e., for ḟ(t)], if f(t) would
present maximum–minimum value points. But the
course of f(t) for t � 0 times does not present such
points and, therefore, there are no such errors.
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